
A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 113–124, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Indexing Text Documents Based on Topic Identification

Manonton Butarbutar and Susan McRoy

Department of Electrical Engineering and Computer Science
University of Wisconsin – Milwaukee, USA

{anton,mcroy}@cs.uwm.edu

Abstract. This work provides algorithms and heuristics to index text docu-
ments by determining important topics in the documents. To index text docu-
ments, the work provides algorithms to generate topic candidates, determine
their importance, detect similar and synonym topics, and to eliminate incoher-
ent topics. The indexing algorithm uses topic frequency to determine the impor-
tance and the existence of the topics. Repeated phrases are topic candidates. For
example, since the phrase ‘index text documents’ occurs three times in this ab-
stract, the phrase is one of the topics of this abstract. It is shown that this
method is more effective than either a simple word count model or approaches
based on term weighting.

1 Introduction

One of the key problems in indexing texts by topics is to determine which set of
words constitutes a topic. This work provides algorithms to identify topics by deter-
mining which sets of words appear together within a certain proximity and how often
those words appear together in the texts.

To count the frequencies of topics in texts accurately, a system must be able to de-
tect topic repetition, similarity, synonymy, parallelism, and implicit references.
However, these factors are not all equally important. We have found that topic repeti-
tion and topic similarity are the most useful and are sufficient to produce good indi-
ces.

The work described in this paper provides algorithms to detect similar topics in
texts. For example, if a text contains the phrase ‘a native American history book’ and
‘this book is about the history of native Americans’, our system, iIndex, detects both
phrases as similar, counts the frequency of topic ‘native American history book’ as
two, and makes the phrase a candidate topic. The iIndex system also detects topics
that are synonyms and sums their frequencies to represent the synonyms together as
one meaning. This is important because the same topic can be expressed in several
different ways. For example, the phrases ‘topic identification’, ‘topic determination’,
‘topic discovery’, ‘finding topic’, ‘locating topic’, and ‘topic spotting’ can all serve as
synonyms.

Among similar phrases, the iIndex system extracts shorter and best phrases from
texts as topic candidates. For example, the phrase ‘blood pressure’ is selected over
‘pressure of the blood’. In addition, unlike previous approaches, such as [WEK01],
iIndex extracts any important phrases from texts, not just simple noun phrases. For
example, expressions such as ‘high blood pressure has no symptoms’ and ‘blood

114 Manonton Butarbutar and Susan McRoy

pressure should be monitored more frequently’ are extracted from texts; these expres-
sions would be missed by a noun phrase indexer.

The major contributions of this work are techniques and algorithms to determine
and to order the most important topics in text documents and to index text documents
efficiently based on important topics in the texts without employing linguistic pars-
ing. It efficiently solves the problem of finding important topics in texts, a problem
that requires exponential computation time, by carefully selecting subsets of the prob-
lem that are practical to compute, yet useful as they cover 97% of the problem do-
main. The approach also provides a method that defines topic synonyms with infer-
ence complexity O(log n) or better.

2 Background

Over the past 30 years, a number of approaches to information retrieval have been
developed, including word-based ranking, link-based ranking, phrase-based indexing,
concept-based indexing, rule-based indexing, and logical inference-based indexing
[Ha92, Sa89].

The closest work to iIndex is that of Johnson [JCD+99] and Aronson [ABC+00];
iIndex, however, applies a much richer set of techniques and heuristics than these two
approaches. For example, iIndex allows one to configure the maximum number of
words in a phrase, whereas in prior work the phrase size has been fixed (3 in Johnson
and 6 in Aronson). The iIndex system also uses limited stemming as opposed to stan-
dard stemming. (We describe both methods and explain the weaknesses of standard
stemming, in Section 3.3.) iIndex also considers complete documents as its input,
while Aronson uses only the titles and abstracts. Finally, iIndex uses a set of config-
urable matching techniques, while Johnson uses just one.

Fagan [Fa87] is one of the first to examine the effectiveness of using phrases for
document retrieval. He reports improvements in precision from –1.8% to 20.1%. As
in other prior work, his phrase construction is limited to 2-word phrases and uses
standard stemming. Similarly, Kelledy and Smeaton [KS97] report that the use of
phrases improves the precision of information retrieval. They use up to 3-word
phases and employ standard stemming. They also require that phrases appear in at
least 25 different documents, whereas iIndex uses any phrases that are repeated in any
document. Consequently, their approach would miss newly coined phrases that are
repeated in only one document, such as ‘limited stemming’ in this document. Also,
unlike iIndex, they do not consider phrase variants such as ‘department of defense’
and ‘defense department’ as equivalent. Mitra et al. [MBSC97] describes a repetition
of the experiments by Fagan with a larger set of about 250,000 documents, limiting
the approach to 2-word phrases that appear in at least 25 documents, employing
standard stemming, and ignoring word order. They conclude that the use of phrases
does not have a significant effect on the precision of the high rank retrieval results,
but is useful for the low rank results.

The work by Wacholder [WEK01] indexes only noun phrases, whereas iIndex
considers all types of phrases. Moreover, Wacholder ranks the topics by the fre-
quency of the head noun alone, whereas iIndex ranks the topics by the frequency of
the whole phrase.

Woods [Wo97] provides another approach to topic identification, but, unlike iIn-
dex, does not use frequency in determining topic rankings.

Indexing Text Documents Based on Topic Identification 115

3 Indexing by Topic

A topic is a set of words, normally a phase, that has meaning. Topics are determined
by detecting sets of words that appear together within certain proximity and counting
how often those words appear together. The more frequent a set of words in the
document, the better the chance that set of words represents an important concept or
topic in the document. Generally, the more (significant) words in a topic the more
specific the topic. Similar topics are grouped (and later stored) by a process that we
call topic canonization. This process involves converting the words in a phrase to
their base forms and then ordering the words alphabetically. The resulting phrase is
called the canonical phrase. We discuss our methods for determining topic length,
topic proximity, and topic frequency below.

A sentence or a phrase is a string of characters between topic separators. Topic
separators are special characters such as period, semicolon, question mark, and ex-
clamation mark that separate one topic from another. A word is a string of characters
consisting of only a-z, A-Z, and 0-9. The approach ignores tokens that are numbers,
hyphens, possessive apostrophes and blank characters.

The topic length is the number of significant words that constitute a topic (sen-
tence or phrase.) Significant words are those that have not been predefined as stop
words. A stop word is high-frequency word that has no significant meaning in a
phrase [Sa89]. iIndex uses 184 stop words. They are manually selected as follows:
all single characters from a to z, all pronouns, terms frequently used as variable
names such as t1, t2, s1, s2, and words that were selected manually, after evaluating
the results of indexing several documents using iIndex.

The maximum and minimum values for topic length are configurable parameters
of iIndex (discussed in Section 4). iIndex also provides default settings. The default
maximum length is 10 and the minimum length is 2. These values were selected be-
cause it has been reported that the average length of large queries to a major search
engine (Alta Vista) is 2.3 words [SHMM98].

Topic proximity is the maximum distance of words apart that constitute a topic. For
example, the phrase ‘a topic must be completely within a sentence’ is about ‘sentence
topic’ and the two words are 6 positions apart. Thus, for this example, the topic prox-
imity is 6.

The topic frequency, or reference count, is the number of times that a topic, similar
topic, or synonymous topic is repeated in the document. In our approach, the impor-
tance of a topic is measured by its frequency. A topic is relevant to a unit of a docu-
ment if the topic is referenced more than once in the unit. A unit of a document can
be the whole document, a section, or a paragraph.

3.1 Indexing Algorithm

The goal of this algorithm is, given a set of documents D, to find a set of w-word
topics that are repeated r times in the documents. The words that constitute a topic
should not be separated by more than p positions.

For example, given document D = “abcdbc”, where each letter represents a word,
the list of phrases of any 2 words at most 1 position apart is {ab, bc, cd, db, bc}. Each
phrase has frequency 1, except phrase ‘bc’ which has frequency 2. The phrases with

116 Manonton Butarbutar and Susan McRoy

the highest frequency are the most important topics. In this case, the only topic is
‘bc’, as a topic must have a frequency of at least 2.

Let u be a unit of a document d in D. By default, u is the whole document. Let X
be the index of D, which is the set of topics that are repeated at least r times in u.
Each index entry x in X represents a relation between topic t, unit u, and the fre-
quency of t in u and is denoted as x(t, u, f). The index is represented by X(T, U, F)
where T is the set of all topics in D, U is the set of all units in D, and F is a set of
integers. By definition, {x(t, u, f1)} union {x(t, u, f2)} = {x(t, u, f1+f2)} i.e. we sum
the frequencies of t in u. The frequency of topic t in unit u is denoted by x(f) for a
given index entry x(t, u, f).

Algorithm 1 Indexing Algorithm

1. For each u in d, do the following.
a. Let Xu be the index of u. Initialize Xu to empty.
b. Let s be a sentence in u.
c. Remove stop words and numbers from s. Ignore s if it is one word or less.
d. For each sentence s in u do the following.

i. Generate topic candidates T from s (Section 3.2).
ii. For each topic t in T, do the following.

1. Perform limited stemming on t (Algorithm 2).
2. Perform topic canonization on t.

iii. Eliminate topics in T that are overlapping in position.
iv. Merge and sum the frequencies of topics T that are the same, simi-

lar or synonyms, to produce index entry x(t, u, f) and add it into Xu.
Notice that x(t, u, f1+f2) replaces both x(t, u, f1) and x(t, u, f2) in
Xu.

e. Remove index entries x from Xu that do not satisfy any of the following
conditions:

i. Topic t consists of significant words less than w.
ii. Topic t contains duplicate words.

iii. Topic t is a subset of other topics and t is not a stand-alone topic.
f. For each topic t in Xu, remove extraneous words from t (Algorithm 5). Re-

move t if it is reduced to one word or less.
2. For each document d in D do the following.

g. Let Xd be the index of d. Set Xd is the union of Xu from each u in d. In doing
so, replace u with d in index entry x(t, u, f).

h. Remove x from Xd if x(f) < r.
3. The index X is the union of Xd and Xu from each u in d and from each d in D.

3.2 Topic Generation

Given a sentence of length s, this algorithm generates all possible phrases (topics) of
length 2 to w words with words up to p positions apart. The algorithm systematically
generates all possible phrases as described in the following example.

Indexing Text Documents Based on Topic Identification 117

3.2.1 An Example
Let’s generate all 3-word phrases of at most 3 positions apart from a text document
“abcde…z”. In this case, each letter represents a word. For a 3-word phrase, there are
only 2 possible slots inside the phrase as shown in pattern XzXzX, where X represents
one word and z represents a slot. For each slot z, we may skip 0, 1, or 2 words, i.e. at
most 3 positions apart. The list of patterns is shown in Table 1. The dash signs in the
patterns represent words that are skipped.

Table 1. List of patterns for generating topic candidates

Slots Patterns Phrases #Phrases
1 0 0 XXX abc, bcd, cde, … 24 = 26-3+1-(0+0)
2 0 1 XX-X abd, bce, cdf, … 23 = 26-3+1-(0+1)
3 0 2 XX--X abe, bcf, cdg, … 22 = 26-3+1-(0+2)
4 1 0 X-XX acd, bde, cef, … 23 = 26-3+1-(1+0)
5 1 1 X-X-X ace, bdf, ceg, … 22 = 26-3+1-(1+1)
6 1 2 X-X--X … 21 = 26-3+1-(1+2)
7 2 0 X--XX … 22 = 26-3+1-(2+0)
8 2 1 X--X-X … 21 = 26-3+1-(2+1)
9 2 2 X--X--X … 20 = 26-3+1-(2+2)

The number of patterns is 3^2 = 9. The number of phrases, 24 + 23 +… + 20 =
198, is less than 9 * 24 = 216, because there are 9 patterns each of which cannot gen-
erate more than 24 phrases (each phrase contains at least 3 words).

3.2.2 Computational Complexity

The number of patterns consist of w words at most p positions apart is 1−wp . An

upper bound of the number of phrases of w words at most p positions apart generated

from one sentence of length s is 1)1(−+− wpws . Thus, the number of phrases

),,(pwsf is less than 1)1(−+− wpws . The number of phrases consisting of 2 to

w words is ∑ =
= w

i
pisfpwsg

2
),,(),,(.

3.2.3 Computational Performance

Worst Case
Table 2 shows the performance of iIndex on the worst-case scenario of generating all
possible phrases from one sentence of unique words w1, w2, …, w124. The value of
s = 124 is the longest sentence found among all text documents evaluated in this
work. The value of w = 10 is the default value set for iIndex.

The numbers in the table were computed by iIndex. The computer specified in
Section 4 ran out of memory when the iIndex tried to compute g(124, 10, 3). There-
fore, the computation time for g(124, 10, 3) is an estimate as indicated by the asterisk.

Average Case
Although the worst case scenarios are almost impossible to compute, the average
cases can be computed efficiently, as shown in Table 3. The table shows the perform-
ance of generating all possible phrases from one sentence consisting of 15 unique
words. The value of s = 15 and w = 3 are based on the average sentence length and
average topic length of all text documents evaluated in this work.

118 Manonton Butarbutar and Susan McRoy

Table 2. The performance of a worst-case scenario

g(s, w, p) Patterns Phrases Minutes
g(124, 10, 1) 9 1071 0
g(124, 10, 2) 1,022 114,437 14
g(124, 10, 3) 29,523 3,158,934 *386
g(124, 10, 4) 349,524 35,767,926 *4,371
g(124, 10, 5) 2,441,405 238,647,305 *29,161

Table 3. The performance of an average-case scenario

g(s, w, p) Patterns Phrases Milliseconds
g(15, 3, 1) 2 27 30
g(15, 3, 2) 6 75 40
g(15, 3, 3) 12 138 40

… … … …
g(15, 3, 12) 111 555 90

Best Case
The best-case scenario is when almost all problem instances are covered in a reason-
able amount of time. In this work, 97% of sentences had 43 words or less and 97%
of the topics generated from all the documents had length 6. Based on those values,
the performance of the algorithm is computed as shown in Table 4. The empirical
results show that we can compute g(43, 6, 3) in 7 seconds. That means it is practical
to compute the index of text documents that contain sentences up to 43 words long,
topics up to 6 words long, and topic proximities up to 3 positions apart.

Table 4. The performance of the best-case scenario

g(s, w, p) Patterns Phrases Seconds
g(43, 6, 1) 5 200 0
g(43, 6, 2) 62 2,279 0
g(43, 6, 3) 363 12,327 7
g(43, 6, 4) 1,364 42,722 53
g(43, 6, 5) 3,905 112,250 156

With this approach, we efficiently solve the problem of finding important topics in

texts, a problem that requires exponential computation time, by carefully selecting
subsets of the problem that are practical to compute, yet cover 97% of the problem.

3.3 Similar Topic Detection

Topic t1 is similar to topic t2 if they have the same significant base words. Significant
words are those that are not stop words. Base words are those that have been con-
verted to their root forms by a process called limited stemming, described below.
Examples of similar topics are ‘repeated term’, ‘repeated terms’, ‘term repetition’,
and ‘repetition of terms’.

Limited stemming is the process of converting word forms to their base forms
(stems, roots) according to a set of conversion rules, F, as part of the simple grammar

Indexing Text Documents Based on Topic Identification 119

G described in Section 3.4. Only those words in F are converted to their base forms,
in addition to the automatic conversion of regular forms as described in the following
algorithm.

Set F includes a list of irregular forms and their corresponding base forms as de-
fined in the WordNet [Mi96] list of exceptions (adj.exc, adv.exc, noun.exc, verb.exc).
Examples of irregular forms are ‘goes’, ‘went’, and ‘gone’ with base form ‘go’. The
stemming is represented by one rule: go � goes | went | gone.

Word forms that have the same sense in all phrases, but are not included in the
WordNet list of exceptions are manually added to F. Examples of such word forms
are ‘repetition’ with base form ‘repeat’ and the word ‘significance’ with base ‘signifi-
cant’.

Algorithm 2 Limited Stemming Algorithm

This algorithm returns the base form of a given word w or null.
1. If word w is defined in F then return its base form.
2. Else

a. If either suffix ‘s’, ‘ed’, or ‘ing’ exists at the end of word w then truncate the
suffix from w to produce w’.

b. If length of w’ is at least 2 then return w’.
c. Return null.

The limited stemming algorithm above has been developed to avoid some of the

errors that arise when a standard stemming algorithm (such as described in [Sa89])
predicts that two words have the same meaning when they do not [Ha92, Fa87]. For
example, the word ‘importance’ should not be stemmed to ‘import’ because the two
words are semantically unrelated.

As mentioned above, stop words and word order are ignored when determining
topics. When these ideas are combined with limited stemming, the following phrases
are detected as similar: ‘repeated terms’, ‘repeated term’, ‘term repetition’, ‘repetition
of terms’. This heuristic will not always work. For example, it will never be able to
distinguish between ‘absence of evidence’ and ‘evidence of absence’. However, we
have found very few cases of this sort.

Algorithm 3 Similar Topic Detection

The following algorithm determines if topic t1 is similar to topic t2.
1. Remove stop words from t1 and t2.
2. Perform limited stemming on t1 and t2.
3. Order words in t1 alphabetically.
4. Order words in t2 alphabetically.
5. Return true if t1 is identical to t2.

3.4 Synonymous Topic Detection

Phrases that have the same meaning are called phrase synonyms or topic synonyms. In
addition to topic canonization, phrase synonyms can be defined explicitly by adding
production rules, S, to the simple grammar G defined below. For example, the follow-

120 Manonton Butarbutar and Susan McRoy

ing production rule specifies that phrases ‘topic identification’, ‘determine topics’,
‘discover topics’, and ‘topic spotting’ are synonyms: topic identification � determine
topics | discover topics | topic spotting .

The rules in S are manually constructed to improve the quality of the index. How-
ever, the iIndex produces good indices without defining any rules in S.

Phrase synonyms share one meaning called the synonym meaning, which is repre-
sented by the string at the head of the production rule. In the above example, the
synonym meaning is string ‘topic identification’. Each phrase (node) in the produc-
tion rule represents a set of similar phrases.

Topic t1 is synonymous to topic t2 if and only if the synonym meaning of t1 is lit-
erally the same as the synonym meaning of t2.

A simple grammar, G, is used to represent both stems for words and synonyms for
topics. It is called a simple grammar because it can be implemented with a simple
look up table with logarithmic complexity O(log n) where n is the number of entries
in the table (the same as the number of terms in the production rules.) The grammar
could be implemented with constant complexity O(1) using hashing.

There are 4519 rules defined in the current implementation of iIndex. The rules de-
fine 11452 mappings of one string to another.

Algorithm 4 Synonymous Topic Detection

1. Remove stop words from t1 and t2.
2. Convert topic t1 and t2 to their canonical phrases.
3. Let g1 be the set of synonym rules with t1. Let g2 be the set of synonym rules

with t2. (Both g1 and g2 are subsets of the simple grammar G.)
4. If intersection of g1 and g2 is not empty, then t1 and t2 are synonyms, otherwise

they are not.

3.5 Topic Elimination

The iIndex generates some incoherent phrases, such as ‘algorithm for determining’
and ‘automatic indexing involves’, during the indexing process. Those phrases need
to be removed from the index.

Topics that contain duplicate words are also removed because we have found that
they are mostly incoherent. An example phrase with duplicate words is ‘string the
string’. The iIndex generates the phrase from [Ka96] because the phrase is repeated
twice (ignoring stop words) as follows.

“… denotes the empty string, the string containing no elements …”
“… machine has accepted the string or that the string belongs …”

3.5.1 Remove Extra Words from Topics
This section describes heuristics to remove some incoherent phrases or to transform
them into coherent phrases.

Define B as the set of words and phrases to be eliminated from the beginning of
topics and E as the set from the end of the topics. S is the set of stop words. Sets B
and E are constructed manually. Examples are B = {according to, based on, follow-
ing, mentioned in} and E = {using, the following, involves, for combining, for deter-
mining, to make}.

Indexing Text Documents Based on Topic Identification 121

Algorithm 5 Removal of Extraneous Words from Topics

1. Remove consecutive words or phrases from the beginning of topic t if they are in
B or S.

2. Remove consecutive words or phrases from the end of t if they are in E or S.
3. If t is reduced to one word or less then do not use t, otherwise use t.

4 Implementation

The iIndex system has been written in C++. Experiments were performed on a laptop
with the following hardware and software: Pentium 4, 2 GHz, Microsoft Windows
2000 Professional, 768 MB memory, and 37 GB hard drive.

The inputs to iIndex are plain text documents in ASCII format. The limited stem-
ming is defined in a file forms.txt, topic synonyms in rules.txt, stop words in stop-
Words.txt, and topic separators in topicSeparator.txt. Parameters with default values
such as s = 50, w = 10, p = 1, r = 2 are configurable in param.txt, where s is the
maximum length of sentences, w is the maximum length of topics, p is the proximity
of topics, and r is the minimum phrase frequency needed to be considered a topic.

5 Results and Evaluation

The iIndex correctly and efficiently finds the most important topics in various types
and lengths of text documents, from individual sentences and paragraphs to short
papers, extended papers, training manuals, and PhD dissertations. Titles and abstracts
were not marked in any special way and thus are not known to iIndex. The topics
extracted from texts are ordered by their importance (topic frequencies).

The iIndex finds 477 topics in [Wi98], a training manual, as shown in Table 5. (N
= sequence number, TF = topic frequency, WF = word frequency average). It cor-
rectly extracts the topic ‘blood pressure measurement’ as the third most important
topic, the topic mentioned in the title of the text. It is indeed true that the text is about
blood pressure, high blood pressure, and blood pressure measurement as suggested by
the first 3 most important topics.

Table 5. List of important topics in blood pressure measurement manual

N TF WF Topics
1 250 306 blood pressure
2 56 227 high blood pressure
3 46 217 blood pressure measurement
4 19 38 american heart association
5 19 157 blood vessels

The iIndex finds 42 topics in [Ka96], a short paper. It correctly extracts the topic

‘finite state technology’ as the second most important topic, which is exactly the title
of the paper. It is indeed true that the paper is about finite state, finite state technol-
ogy, and regular language as suggested by the first 3 most important topics.

122 Manonton Butarbutar and Susan McRoy

The iIndex finds 2172 topics in [Wo97], an extended paper. It correctly extracts
the topic ‘conceptual indexing’ as the most important topic, which is exactly the title
of the paper. It is indeed true that the text is about conceptual indexing, conceptual
taxonomy, and retrieval system as suggested by the first 3 most important topics.

The iIndex finds 2413 topics in [Li97], a PhD thesis. It correctly extracts the
phrase ‘topic identification’ as the second most important topic, the topic mentioned
in the title. It is indeed true that the text is about topic signatures, topic identification,
precision and recall as suggested by the first 3 most important topics.

5.1 Speed of Indexing

Overall, the iIndex is very effective and very efficient in finding the most important
topics in text documents. It takes 34 seconds to index a 100-page (46145-word) text
[Wo97]. It takes only 3 seconds to find 482 important topics among 23166 possible
phrases in the [Wi98] training manual and less than 1 second to find 43 important
topics among 5017 possible phrases in [Ka96].

5.2 Comparisons to the Word Count Model

The word count model ranks the topics based on the word frequency average listed in
column WF of Table 6. The word count model ranks the topic ‘blood pressure cuff’
extremely high (2nd), a topic that is mentioned just 2 times in [Wi98]. It ranks this
topic higher than the topic ‘blood pressure measurement’, a topic that is mentioned 46
times. It is unlikely that topic ‘blood pressure cuff’ is more important than topic
‘blood pressure measurement’ in the document. On the other hand, the iIndex cor-
rectly infers that topic ‘blood pressure measurement’ is much more important (3rd)
than topic ‘blood pressure cuff’ (262nd) in the document as shown in Table 5. The
iIndex thus determines the importance of topics in this document more accurately
than the word count model does.

Table 6. List of important topics in blood pressure measurement manual by word count average
order

N TF WF Topics
1 250 306 blood pressure
2 2 242 blood pressure cuff
3 8 229 blood pressure to clients
4 56 227 high blood pressure
5 17 221 elevated blood pressure

5.3 Comparisons to the TFIDF / Term Weighting Model

The best term weighting model is tfidf according to Salton and Buckley [SB88] who
evaluated 287 different combinations of term-weighting models. However, tfidf fails
to find the most important topic ‘voting power’ from a Wall Street Journal text, ac-
cording to [Li97, page 73] while the iIndex correctly finds it as shown in Table 7.

Indexing Text Documents Based on Topic Identification 123

The iIndex finds more specific and meaningful topics such as voting power, million
shares, and eastern labor costs, while tfidf finds less specific topics such as Lorenzo,
holder, voting, proposal, etc. The iIndex is thus better at identifying important and
specific topics than tfidf.

Table 7. List of important topics in Wall Street Journal text identified by tfidf and iIndex

tfidf iIndex
Rank Term Weight Phrase Frequency

1 Lorenzo 19.90 voting power 2
2 holder 9.66 million shares 2
3 voting 9.05 eastern labor costs 2
4 proposal 8.03
5 50.7% 7.61

…
16 power 5.01
…

6 Conclusions

This paper presents iIndex, an effective and efficient approach to indexing text
documents based on topic identification. A topic is any meaningful set of words that
is repeated at least twice in the texts. The determination of topics is based on the
repetition of the words that appear together within texts. To measure topic frequen-
cies in texts more accurately, iIndex detects topics that are similar or synonymous. It
is also highly configurable.

iIndex allows users to configure the length of phrases, the maximum gap between
words in a phrase, the maximum sentence length, the sets of words to be considered
as synonyms, the stems of irregular words, the set of stop words, the set of topic sepa-
rators, and the minimum phrase frequency for topics. iIndex also provides useful
defaults for these values; for example by choosing a sentence maximum of 50 words,
a phrase length of 10, and a word proximity of 1, it can produce a good index of a
100-page (about 46145-word) text in 34 seconds.

References

[ABC+00] A. R. Aronson, O. Bodenreider, H. F. Chang, S. M. Humphrey, J. G. Mork, S. J.
Nelson, et al. The NLM indexing initiative. Proc AMIA Symp 2000(20 Suppl):17-21.

[Fa87] J. L. Fagan. Automatic Phrase Indexing for Document Retrieval: An Examination of
Syntactic and Non-Syntactic Methods. Proceedings of the Tenth ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 91-108, June 1987.

[Ha92] D. Harman. Ranking Algorithms. In William B. Frakes and Richardo Baeza-Yates,
editors, Information Retrieval Data Structures & Algorithms, pages 363-392, Prentice Hall,
New Jersey, 1992.

[JCD+99] D. B. Johnson, W. W. Chu, J. D. Dionisio, R. K. Taira, H. Kangarlo. Creating and
Indexing Teaching Files from Text Patient Reports. Proc AMIA Symp 1999:814-8.

124 Manonton Butarbutar and Susan McRoy

[Ka96] R. M. Kaplan. Finite State Technology. In Ronald A. Cole, Editor in Chief, Survey of
the State of the Art in Human Language Technology, Chapter 11.6, Center for Spoken Lan-
guage Understanding, Oregon Graduate Institute, USA, 1996.

[KS97] F. Kelledy, A. F. Smeaton. Automatic Phrase Recognition and Extraction from Text.
Proceedings of the 19th Annual BCS-IRSG Colloqium on IR Research, Aberden, Scottland,
April 1997.

[Li97] C. Y. Lin. Robust Automated Topic Identification. PhD Thesis, University of Southern
California, 1997.

[MBSC97] M. Mitra, C. Buckley, A. Singhal, C. Cardie. An Analysis of Statistical and Syntac-
tic Phrases. Proceedings of RIAO97, Computer-Assisted Information Searching on the
Internet, pages 200-214, Montreal, Canada, June 1997.

[Mi96] G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,
38(11):39-41, 1996.

[SB88] G. Salton, C. Buckley. Term-weighting approaches in automatic text retrieval. Infor-
mation Processing and Management, pages 513-523, 1988.

[Sa89] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.
[SHMM98] C. Silverstein, M. Henzinger, H. Marais, M. Moricz. Analysis of a very large

AltaVista query log. Tech. rep. 1998-014, Digital Systems Research Center, 1998.
[WEK01] N. Wacholder, D. K. Evans, J. L Klavans. Automatic Identification and Organization

of Index Terms for Interactive Browsing. Joint Conference on Digital Libraries 2001:126-
34.

[Wi98] Blood Pressure Affiliate Faculty of the American Heart Association of Wisconsin.
Blood Pressure Measurement Education Program Manual. American Heart Association of
Wisconsin, Milwaukee,1998

[Wo97] A. W. Woods. Conceptual Indexing: A Better Way to Organize Knowledge. Technical
Report SMLI TR 97-61, Sun Microsystems Laboratories, Mountain View, CA, 1997.

	1 Introduction
	2 Background
	3 Indexing by Topic
	3.1 Indexing Algorithm
	3.2 Topic Generation
	3.3 Similar Topic Detection
	3.4 Synonymous Topic Detection
	3.5 Topic Elimination

	4 Implementation
	5 Results and Evaluation
	5.1 Speed of Indexing
	5.2 Comparisons to the Word Count Model
	5.3 Comparisons to the TFIDF / Term Weighting Model

	6 Conclusions
	References

